Abstract

Flange joints with spigots are widely used in aero-engines. The spigot will restrict the shear slipping between flanges, which, in turn, affects the stiffness characteristics of the joint. The current model and research on flange joints without spigots may not be suitable for the dynamic characteristics of aero-engines. Moreover, the complexity of contact pairs limits the application of the flange joint finite element (FE) model in aero-engine dynamics analysis. Therefore, a simplified analytical model of a flange joint with a spigot is proposed in this paper. First, the stiffness characteristic of the flange joint with a spigot is studied using the FE method. Second, a corresponding experiment is executed to verify the result of the FE analysis. Furthermore, based on the former FE and experimental analysis, one section of a flange joint is simulated by the Jenkins friction model and a spring. Then, a simplified analytical model of the entire flange joint is built according to the different statuses of each section. Finally, a simulation analysis of the stiffness characteristic is performed. The result shows that the simplified analytical model can be utilized to describe the bending stiffness characteristic of the flange joint with a spigot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.