Abstract
Micropancakes are quasi-two-dimensional micron-sized domains on crystalline substrates (e.g. highly oriented pyrolytic graphite (HOPG)) immersed in water. They are only a few nanometers thick, and are suspected to come from the accumulation of dissolved air at the solid-water interface. However, the exact chemical nature and basic physical properties of micropancakes have been under debate ever since their first observation, primarily due to the lack of a suitable characterization technique. In this study, the stiffness of micropancakes at the interface between HOPG and ethanol-water solutions was investigated by using PeakForce Quantitative NanoMechanics (PF-QNM) mode Atomic Force Microscopy (AFM). Our measurements showed that micropancakes were stiffer than nanobubbles, and for bilayer micropancakes, the bottom layer in contact with the substrate was stiffer than the top one. Interestingly, the micropancakes became smaller and softer with an increase in the ethanol concentration in the solution, and were undetectable by AFM above a critical concentration of ethanol. But they re-appeared after the ethanol concentration in the solution was reduced. Clearly the evolution and stiffness of the micropancakes were dependent on the chemical composition in the solution, which could be attributed to the correlation of the mechanical properties of the micropancakes with the surface tension of the liquid phase. Based on the "go-and-come" behaviors of micropancakes with the ethanol concentration, we found that the micropancakes could actually tolerate the ethanol concentration much higher than 5%, a value reported in the literature. The results from this work may be helpful in alluding the chemical nature of micropancakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.