Abstract

This work reports the effect of stiffness and conformation of chain-like polymers on wrapping behaviors around single-walled carbon nanotubes (SWNT). As a model of chain-like polymers, three kinds of poly(dialkylsilane) (PSi)s with random-coiled, flexible, and semiflexible main chains were employed. Complexes of PSi and SWNT were prepared using mechanochemical high-speed vibration milling (HSVM). Stiffness-dependent polymer wrapping behaviors were investigated using combinational analyses with a differential scanning calorimeter, transmission electron microscopy, and atomic force microscopy. Furthermore, the conformational behaviors of the PSi's wrapped onto SWNTs were characterized spectroscopically with ordinary UV spectroscopy. Random-coiled and flexible PSi's were successfully wrapped onto small bundles of SWNTs, in which their conformations were changed to fit the surface curvatures of the SWNTs. However, semiflexible PSi could not form a complex with SWNTs, and its conformation remained unchanged even after the same HSVM process. Knowledge gained from this study may lead to a new approach to molecular design of chain-like polymers for efficient wrapping materials for SWNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call