Abstract
Inorganic CsPbI2Br perovskites have witnessed incredible advances as a promising representative for translucent and tandem solar cells, but unfortunately, they are still plagued by serious energy losses and undesired phase instability. Herein, a new type of π-conjugated small molecule of 4-guanidinobenzoic-acid-hydrochloride (4-GBACl) is demonstrated to effectively cross-link the Pb-X framework of perovskites. The strong coordination between 4-GBACl and the [PbX6]4- octahedron of perovskites effectively stiffens the Pb-X framework to suppress the ion migration, thus stabilizing the perovskite phase structure against light and thermal conditions. Apart from the physical barrier for phase instability resulting from the hydrophobic benzene ring at grain boundaries (GBs), guanidinium cations and -COOH and Cl- groups can simultaneously afford the passivation of positively and negatively charged defects at the GBs and surface, including undercoordinated halide species and undercoordinated Pb2+ ions, thereby effectively inhibiting the charge trapping/recombination centers. Two-dimensional confocal-fluorescence mapping images provide a visualized sight into the significantly suppressed nonradiative recombination and the prolonged carrier lifetime. It is suggested that the 4-GBACl additive plays multiple roles in grain cross-linking to regulate crystallization, distinctly reducing the trap-state density, ion migration inhibition, and moisture barrier in CsPbI2Br films. Consequently, the 4-GBACl-treated device exhibits a champion power conversion efficiency (PCE) of 15.59% accompanied with a considerably improved Voc of 1.28 V and maintains 88% of the initial PCE value after 1200 h aging under 20% relative humidity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.