Abstract

The compression behavior of nanoscale Zr-doped anatase was studied by means of a diamond anvil cell experiment with alternating cycles of compression and decompression in the stability field of anatase (up to 13 GPa). We found that multiple cycles of compression lead to stiffening of the material: Precompressed samples of nanoanatase Ti 0.9Zr 0.1O 2 have a higher bulk modulus ( K 0=249(9) and 266(6) GPa) compared with the sample when compressed for the first time ( K 0=211(7) GPa). Upon compression, the crystallite size remains the same and the crystalline areas are free of defects. After the experiment, the crystallites are surrounded by amorphous rims, confirming the theoretical prediction by Pischedda et al. [Ultrastability and enhanced stiffness of similar to 6 nm TiO 2 nanoanatase and eventual pressure-induced disorder on the nanometer scale, Phys. Rev. Let. 96 (2006) 035509] for nanoscale anatase, but yielding much lower pressures (12 GPa) for the onset of partial amorphization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.