Abstract

In this study, we report a liquid-solid reaction method combined with preferential particle orientation for fabricating a heterostructured Al3BC/6061 composite with ultrahigh Young's modulus (105 GPa), high tensile strength (495 MPa) and reasonable ductility (6.2%). The preferential orientation of Al3BC nanoplatelets contributes to the ultrahigh stiffness, and heterogeneous grain structure of the Al matrix facilitates the development of hetero-deformation induced stress and extra strain hardening, giving rise to high strength and good ductility. These results shed new sights into the untapped potential in improving the mechanical properties of metal matrix composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call