Abstract

As is well known, digital waveguides offer a computationally efficient, and physically motivated, means of simulating wave propagation in strings. The method is based on sampling the traveling wave solution to the ideal wave equation and linearly filtering this solution to simulate dispersive effects due to stiffness and frequency-dependent loss; such digital filters may terminate the waveguide or be embedded along its length. For strings of high stiffness, however, dispersion filters can be difficult to design and expensive to implement. It is shown how high-quality time-domain terminating filters may be derived from given frequency-domain specifications which depend on the model parameters. Particular attention is paid to the problem of phase approximation, which, in the case of high stiffness, is strongly nonlinear. Finally, in the interest of determining the limits of applicability of digital waveguide techniques, we make a comparison with more conventional finite difference schemes, in terms of computational cost and numerical dispersion, for a set of string stiffness parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.