Abstract

Recently, Berry, Olver and Jones have found uniform asymptotic expansions for the exponentially small remainder terms that result when asymptotic expansions are optimally truncated. These uniform expansions describe the rapid change in the behaviour of the remainders as a Stokes line is crossed. We show how such uniform expansions may be found when a function can be expressed as a Stieltjes transform. Such an approach has the following advantages: the uniform expansion is calculated directly, non-uniform expansions away from the Stokes line are readily found, and explicit error bounds may be established. We illustrate the method by application to the modified Bessel function K v ( z ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.