Abstract
AbstarctLocations of subglacial lakes discovered under fast-moving West Antarctic ice streams tend to be associated with topographic features of the subglacial bed or with areas that have strong variations in basal conditions. Inversion of ice-stream surface velocity indicates that basal conditions under ice streams can be highly variable and that there can be widespread regions where basal traction is high. To seek an explanation for why lakes appear to be sited near areas with high basal traction, we use numerical models to simulate ice-stream dynamics, thermodynamics and subglacial water flow. We demonstrate that the ice flow over high basal traction areas produces favourable conditions for the ponding of meltwater. Energy dissipation associated with ice sliding over a region with high basal traction constitutes a water source supplying a lake, and ice-thickness perturbations induced by ice flow over variable traction create local minima in hydraulic potential. Variations in thermodynamic processes caused by such ice flow could be responsible for limiting the horizontal extent of the subglacial lakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.