Abstract
Although many studies have addressed the role of bacteria in the degradation of organic matter, few have examined how bacteria alter the physicochemical properties of dissolved and colloidal organic matter in coastal systems. Here, we investigate how the sticking properties of transparent exopolymeric particles (TEP) varied with DOM age in batch cultures. We show that in two contrasted sites, despite different initial TEP sticking properties and bulk concentrations, after 48 h, the sticking properties were similar and increased (i.e. TEP became stickier) with increasing DOM age. We propose that TEP occurring after 48 h of incubation are mainly of heterotrophic origin, which is in contrast to the previously identified TEP of autotrophic origin. These results highlight the potential importance of bacterial DOM production, particularly in the aphotic zone, and further underline the potential of bacterial heterotrophs to produce biologically refractory dissolved organic matter that is physically reactive (i.e. sticky).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.