Abstract
This paper deals with mechanical modelling and numerical bifurcation analysis of stick–slip oscillations that plague extremely low feed grinding operations. Based on experimental observations, a novel two degree of freedom mechanical model of a grinding machine feed drive system is formulated, which incorporates Stribeck-type dry friction, position and velocity controller dynamics, and actuator backlash. Loss and re-establishment of contact between the feed drive elements is modelled through both rigid-body impacts and a contact-stiffness model. The resulting piecewise-smooth equations of motion are subjected to detailed stability and bifurcation analysis with the help of shooting and collocation based numerical continuation tools. Major focus is attributed to the influence of the feed velocity and the control-loop parameters as well as the identification of stable, stick–slip free parameter regimes. Finally, a controller enhancement strategy is proposed, based on event-driven integrator reset rules, to help limit the amplitude of arising limit-cycle oscillations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.