Abstract

Contact angles of a series of n-alkanes (i.e., n-heptane to n-hexadecane) are studied on two functionalized maleimide copolymers (i.e., poly(ethene-alt-N-(4-(perfluoroheptylcarbonyl)aminobutyl)maleimide) (ETMF) and poly(octadecene-alt-N-(4-(perfluoroheptylcarbonyl)aminobutyl)maleimide) (ODMF)). On the homogeneous ETMF films, all liquids show a smooth motion of the three-phase line. In contrast, on ODMF surfaces that are found to consist of mainly fluorocarbons and small patches of hydrocarbons, short-chain n-alkanes show a stick-slip pattern. By increasing the chain length of the probe liquids, stick-slip is reduced significantly. The phenomenon is discussed in the framework of the Cassie equation. It is found that the upper limit of contact angles in the stick-slip pattern is given by the advancing angle that would be obtained on the pure fluorocarbon surface, whereas the lower limit of the stick-slip pattern is given by the Cassie angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.