Abstract

We present a robust and fiducial-marker-free algorithm that can identify and correct stick-slip distortion caused by nonuniform rotation (or beam scanning) in distally scanned catheters for endoscopic optical coherence tomography (OCT) images. This algorithm employs spatial frequency analysis to select and remove distortions. We demonstrate the feasibility of this algorithm on images acquired from ex vivo rat colon with a distally scanned DC motor-based endoscope. The proposed algorithm can be applied to general endoscopic OCT images for correcting nonuniform rotation distortion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.