Abstract

For a nontrivial knot [Formula: see text], Negami found an upper bound on the stick number [Formula: see text] in terms of its crossing number [Formula: see text] which is [Formula: see text]. Later, Huh and Oh utilized the arc index [Formula: see text] to present a more precise upper bound [Formula: see text]. Furthermore, Kim, No and Oh found an upper bound on the equilateral stick number [Formula: see text] as follows; [Formula: see text]. As a sequel to this research program, we similarly define the stick number [Formula: see text] and the equilateral stick number [Formula: see text] of a spatial graph [Formula: see text], and present their upper bounds as follows; [Formula: see text] [Formula: see text] where [Formula: see text] and [Formula: see text] are the number of edges and vertices of [Formula: see text], respectively, [Formula: see text] is the number of bouquet cut-components, and [Formula: see text] is the number of non-splittable components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call