Abstract

Candida albicans, the most prevalent fungal pathogen, exists as a commensal in the human host. It is subjected to myriad physiological stress conditions in different host niches, which jeopardizes its fitness to survive and propagate as an established commensal. C. albicans has highly labile chromatin which gets remodeled in response to the stress conditions to facilitate the expression of several stress-responsive genes. Several epigenetic factors including histone variants, histone modifiers and chromatin remodelers that define the chromatin architecture play crucial roles in the regulation of the stress-responsive genes in this organism. Here we investigated the roles of the ATP-dependent chromatin remodeler RSC (Remodel the Structure of Chromatin) in several stress responses in C. albicans, by targeting the key ATPase component, Sth1, given its profound and similar roles exist in Saccharomyces cerevisiae. We have unraveled the crucial roles of the RSC complex (Sth1) in maintaining cell wall integrity and fighting against osmotic and oxidative stresses. We found that the mutant conditionally depleted of Sth1 was sensitive to the cell wall disrupting agents, and the mutant without exposure to any stressor accumulated higher chitin content in the cell wall as a defense mechanism to restore the cell wall integrity. Further, this was supported by the phosphorylation of MAPK1 protein Mkc1, which happens due to activation of the cell wall integrity pathway PKC1. We also observed the Sth1 mutant to be sensitive to oxidative and osmotic stresses in vitro, which are very important and imparted by the host defense mechanism. This suggests that the mutant could get attenuated and hence become less virulent than the wild-type when loss of function of Sth1 happens. We also found that Sth1 has a crucial role in maintaining genomic integrity as sth1 mutant cells accumulate extensive DNA damages and show the loss in cell viability. Overall this work suggests that Sth1 has an important role in fighting against some of the clinically relevant and physiologically important stresses. It also has a crucial role in fighting against stress to the genomic integrity and hence functions in DNA damage repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call