Abstract
The human breast cancer resistance protein (BCRP, also know as ABCG2, MXR, or ABCP) is one of the more recently discovered ATP-binding cassette (ABC) transporters that confer resistance on cancer cells by mediating multidrug efflux. In the present study, we have obtained functional expression of human BCRP in the Gram-positive bacterium Lactococcus lactis. BCRP expression conferred multidrug resistance on the lactococcal cells, which was based on ATP-dependent drug extrusion. BCRP-mediated ATPase and drug transport activities were inhibited by the BCRP-specific modulator fumitremorgin C. To our knowledge these data represent the first example of the functional expression of a mammalian ABC half-transporter in bacteria. Although members of the ABCG subfamily (such as ABCG1 and ABCG5/8) have been implicated in the transport of sterols, such a role has not yet been established for BCRP. Interestingly, the BCRP-associated ATPase activity in L. lactis was significantly stimulated by (i) sterols including cholesterol and estradiol, (ii) natural steroids such as progesterone and testosterone, and (iii) the anti-estrogen anticancer drug tamoxifen. In addition, BCRP mediated the efflux of [3H]estradiol from lactococcal cells. Our findings suggest that BCRP may play a role in the transport of sterols in human, in addition to its ability to transport multiple drugs and toxins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.