Abstract

Topical corticosteroids have been the most commonly prescribed drugs to treat skin inflammation, but their uses can lead to several adverse effects. Nowadays, new pharmacological strategies have been evaluated to improve dermatologic efficacy and reduce adverse effects, including natural products. The aim of this study was to evaluate and compare the effects of a plant sterol standardized supercritical CO2 phytopharmaceutical of Physalis angulata L. with hydrocortisone on the immune and inflammatory mediators, and skin repair components production. Moreover, we studied effects of both products on the skin microcirculation and temperature in a double-blind placebo-controlled clinical trial. Both products were evaluated on the immune (IL-6, IL-10, INF-γ, TNF-α, and IL-1α), inflammatory (COX-2, LOX, PLA2 , PGE2 , LTB4 , histamine, and NF-κB), and repair components (TGF-β, GM-CSF, collagen, and GAG) production on human keratinocytes and fibroblast in non-stimulated and LPS-stimulated conditions. Indeed, in a randomized double-blind placebo-controlled clinical trial, we evaluated the effects of the both creams on the skin microcirculation and temperature using laser Doppler and infrared thermometer, respectively. Physalis angulata acted on the skin, modulating immune status and inflammatory response producing corticoid-like effects, but different of hydrocortisone, increased skin repair factors. The effects of phytopharmaceutical cream in the clinical trial promoted a better reduction in skin microcirculation and temperature than hydrocortisone. Taken together, the results indicate that sterol standardized CO2 supercritical preparation of P angulata is a new and innovative phytopharmaceutical with multiple pharmacological effects potentially useful as human skin protective product, particularly against cutaneous inflammatory disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.