Abstract

Human leishmaniasis is an infectious disease caused by Leishmania protozoan parasites. Current chemotherapeutic options against the deadly disease have significant limitations. The ergosterol biosynthetic pathway has been identified as a drug target in Leishmania. However, remarkable differences in the efficacy of antifungal azoles that inhibit ergosterol biosynthesis have been reported for the treatment of leishmaniasis. To better understand the sterol biosynthetic pathway in Leishmania and elucidate the mechanism underlying the differential efficacy of antifungal azoles, we developed a new LC-MS/MS method to study sterol profiles in promastigotes of three Leishmania species, including two L. donovani, one L. major and one L. tarentolae strains. A combination of distinct precursor ion masses and LC retention times allowed for specific detection of sixteen intermediate sterols between lanosterol and ergosterol using the newly developed LC-MS/MS method. Although both posaconazole and fluconazole are known inhibitors of fungal lanosterol 14α-demethylase (CYP51), only posaconazole led to a substantial accumulation of lanosterol in azole-treated L. donovani promastigotes. Furthermore, a key intermediate sterol accumulated by 40- and 7-fold when these parasites were treated with posaconazole and fluconazole, respectively, which was determined as 4α,14α-dimethylzymosterol by high resolution mass spectrometry and NMR spectroscopy. The identification of 4α,14α-dimethylzymosterol supports a branched ergosterol biosynthetic pathway in Leishmania, where lanosterol C4- and C14-demethylation reactions occur in parallel rather than sequentially. Our results suggest that selective inhibition of leishmanial CYP51 is insufficient to effectively prevent parasite growth and dual inhibitors of both CYP51 and the unknown sterol C4-demethylase may be required for optimal antiparasitic effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.