Abstract
Members of the fungal genus Pneumocystis colonize healthy mammalian hosts without causing apparent disease, but colonization in immunocompromised hosts may result in a potentially fatal pneumonia known as Pneumocystis pneumonia. Although Pneumocystis are fungi, this genus has characteristics that make it atypical among other fungi. Pneumocystis do not appear to synthesize the major fungal sterol, ergosterol, and biochemical analyses have shown that they utilize cholesterol rather than ergosterol as the bulk sterol. Pneumocystis carinii appears to scavenge exogenous sterols, including cholesterol, from its mammalian host. As a result, it has long been held that their ability to scavenge cholesterol from their hosts, and their inability to undergo sterol biosynthesis, makes them resistant to antifungal drugs that target ergosterol or ergosterol biosynthesis. However, genome scans and in vitro assays indicate the presence of sterol biosynthetic genes within the P. carinii genome, and targeted inhibition of these enzymes resulted in reduced viability of P. carinii, suggesting that these enzymes are functional within the organism. Heterologous expression of P. carinii sterol genes, along with biochemical analyses of the lipid content of P. carinii cellular membranes, have provided an insight into sterol biosynthesis and the sterol-scavenging mechanisms used by these fungi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.