Abstract

The effects of different atrial natriuretic peptides on cyclic GMP formation and steroidogenesis have been studied in Percoll-purified mouse Leydig cells. Rat atrial peptides rANP (rat atrial natriuretic peptide), rAP-I (rat atriopeptin I) and rAP-II (rat atriopeptin II), in the presence of a phosphodiesterase inhibitor, stimulated cyclic GMP formation in a concentration-dependent manner. In the presence of saturating concentrations of the peptides, a 400-600 fold stimulation of cyclic GMP accumulation was observed. Among the peptides, rAP-II appeared to be the most potent. ED50 values (concentration causing half-maximal effect) for rAP-II, rANP and rAP-I were 1 X 10(-9) M, 2 X 10(-9) M and 2 X 10(-8) M respectively. A parallel stimulation of cyclic GMP formation and testosterone production by the cells was observed after incubation of the cells with various concentrations of rAP-II. In the presence of a saturating concentration of rAP-II (2 X 10(-8) M), maximum stimulation of intracellular cyclic GMP content was obtained within 5 min of incubation. Testosterone production by mouse Leydig cells could be stimulated by 8-bromo cyclic GMP in a concentration-related manner. At a 10 mM concentration of the cyclic nucleotide, steroidogenesis was stimulated to a similar extent as that obtained with a saturating concentration of human chorionic gonadotrophin (5 ng/ml). On the basis of these results we conclude that cyclic GMP acts as a second messenger in atrial-peptide-stimulated steroidogenesis in mouse Leydig cells. The steroidogenic effect of atrial peptides appears to be species-specific, since none of these peptides stimulated testosterone production by purified Leydig cells of rats, though in these cells a 40-60-fold stimulation of cyclic GMP formation in response to each of the three peptides was observed. However, 8-bromo cyclic GMP could stimulate testosterone production in rat Leydig cells. Therefore we conclude that the lack of steroidogenic response in rat Leydig cells to atrial-natriuretic-factor-stimulation results from an insufficient formation of cyclic GMP in these cells. This species difference would appear to result from a lower guanylate cyclase activity in rat Leydig cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call