Abstract

Fully grown fish and amphibian oocytes exposed to a maturation-inducing steroid (MIS) activates multiple signal transduction pathways, leading to formation and activation of maturation-promoting factor (MPF) and induction of germinal vesicle breakdown (GVBD). The present study was to investigate if phosphatidylinositol 3 kinase (PI3 kinase) and mitogen-activated protein kinase (MAP kinase) activation are required for naturally occurring MIS, 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P)-induced cdc2 activation and oocyte maturation (OM) in Tenualosa ilisha. We observed that17,20β-P-induced OM was significantly inhibited by PI3 kinase inhibitors Wortmannin and LY29400. 17,20β-P was shown to activate PI3 kinase maximally at 90min and cdc2 kinase at 16h of treatment. Relative involvement of PI3 kinase, MAP kinase and cdc2 kinase in 17,20β-P-induced OM was examined. MAP kinase was rapidly phosphorylated and activated (60–120min) after MIS treatment and this response preceded the activation of cdc2 kinase by several hours. A selective inhibitor of MAP kinase (MEK), PD98059, sufficiently blocked the phosphorylation and activation of MAP kinase. Inhibition of MAP kinase activity using PD98059 however, had no effect on MIS-induced cdc2 kinase activation and GVBD. These results demonstrate that activation of the PI3 kinase is required for 17,20β-P-induced cdc2 kinase activation and OM in T. ilisha. MAP kinase although was activated in response to 17,20β-P and PI3 kinase activation, it is not necessary for cdc2 activation and OM in this species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call