Abstract

Steroid receptor coactivator-1 (SRC-1) amplifies genomic steroid hormone signal transduction and has been implicated in steroid-mediated sexual differentiation of the mammalian nervous system. We investigated the possible effect of an SRC-1 null mutation on 2 morphological endpoints of androgenic signaling: the number and size of motoneurons within the spinal nucleus of the bulbocavernosus (SNB). In wild-type C57/BL6 mice, SRC-1 immunoreactive nuclei were observed within the SNB and one of its target muscles, the levator ani. However, SRC-1 null mice were indistinguishable from sex-matched wild-type littermates in both SNB number and cross-sectional area of SNB motoneurons. Similarly, we found no difference between SRC-1 null and wildtype littermates in the number or size of motoneurons in the retrodorsolateral nucleus, a motor pool that is not typically sexually differentiated in either number or size. These results demonstrate that SRC-1 is not essential for the development and maintenance of a sexually dimorphic neuromuscular system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call