Abstract
There is a growing appreciation for the importance of astrocytes, a type of nonneuronal glial cell, to overall brain functioning. The ability of astrocytes to respond to gonadal steroid hormones with changes in morphology has been well documented in the adult brain. It is also apparent that astrocytes of the developing brain are permanently differentiated by the neonatal hormonal milieu, in particular by estradiol, resulting in sexually dimorphic cell morphology, synaptic patterning, and density in males and females. The mechanisms of hormonally mediated astrocyte differentiation are likely to be region specific. In the arcuate nucleus of the hypothalamus, neuron-to-astrocyte signaling appears to play a critical role in estradiol-induced astrocyte differentiation during the first few days of life. Gamma aminobutyric acid (GABA) is an amino acid neurotransmitter that is synthesized and released exclusively by neurons. The levels of GABA are increased in the arcuate nucleus of neonatal males versus females. Preventing the increase in males or mimicking GABA action in females modulates astrocytes accordingly. Speculation about and evidence in support of the functional significance of this dimorphism to adult reproductive functioning is the topic of this review.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.