Abstract

Two metabolites of the steroid hormones progesterone and deoxycorticosterone, 3 alpha-hydroxy-5 alpha-dihydroprogesterone and 3 alpha, 5 alpha-tetrahydrodeoxycorticosterone, are potent barbiturate-like ligands of the gamma-aminobutyric acid (GABA) receptor-chloride ion channel complex. At concentrations between 10(-7) and 10(-5)M both steroids inhibited binding of the convulsant t-butylbicyclophosphorothionate to the GABA-receptor complex and increased the binding of the benzodiazepine flunitrazepam; they also stimulated chloride uptake (as measured by uptake of 36Cl-) into isolated brain vesicles, and potentiated the inhibitory actions of GABA in cultured rat hippocampal and spinal cord neurons. These data may explain the ability of certain steroid hormones to rapidly alter neuronal excitability and may provide a mechanism for the anesthetic and hypnotic actions of naturally occurring and synthetic anesthetic steroids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.