Abstract

The breeding season is very brief for arctic-breeding passerines, and any interruptions of parental care by aggressive interactions over territory may reduce reproductive success. We tested both the “testosterone insensitivity” and “corticosterone insensitivity” hypotheses in the arctic-breeding Gambel's white-crowned sparrow, Zonotrichia leucophrys gambelii. Additionally, we tested whether simulated territorial intrusions (STIs), known to stimulate increases in luteinizing hormone (LH) and testosterone (T) in mid-latitude breeding Z. l. pugetensis, would also be effective in either the early or late phases of the brief breeding season of Z. l. gambelii. Plasma levels of T and LH were high early in the breeding season and declined as egg laying began. Exposure of free-living males to 10 min of STI significantly increased LH but not T secretion. Nonetheless, the pituitary–gonadal axis is sensitive as jugular injection of gonadotrophin-releasing hormone increased plasma T at 10 min relative to saline-challenged controls. T implants failed to increase territorial aggression following STI during incubation. These data are consistent with the T insensitivity hypothesis and contrast sharply with the response of the southerly breeding subspecies, Z. l. pugetensis, in which the territorial response to T administration is retained throughout its relatively long breeding season. However, corticosterone implants during the incubation period decreased territorial aggression during STI. This responsiveness to corticosterone is not consistent with the corticosterone insensitivity hypothesis of stress modulation. Z. l. gambelii retain sensitivity to corticosterone levels that may occur naturally in response to environmental perturbations resulting in suppression of territorial behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call