Abstract

Soy isoflavones have been studied extensively for estrogenic and antiestrogenic properties. Other flavonoids, found in fruits, vegetables, tea and wine, have been much less tested for steroid hormone activity. We therefore assessed the estrogenic, androgenic and progestational activities of 72 flavonoids and structurally-related compounds. These compounds were tested on BT-474 human breast cancer cells at concentrations of 10(8)-10(-5) M, with estradiol (estrogen), norgestrel (progestin) and dihydrotestosterone (androgen) used as positive controls, and ethanol (solvent) as a negative control. pS2, an estrogen-regulated protein, and prostate-specific antigen (PSA), regulated by androgens and progestins, were quantified in tissue culture supernatants using ELISA-type immunofluorometric assays developed in-house. Of the 72 compounds tested, 18 showed estrogenic activity at 10(-5) M. Of this subset, seven also showed progestational activity at this concentration. The soy isoflavones, biochanin A and genistein, showed the most potent estrogenic activity, with a dose-response effect up to 10(-7) M. Of all other flavonoids, luteolin and naringenin displayed the strongest estrogenicity, while apigenin had a relatively strong progestational activity. Based on our data, we have formulated a set of structure/function relationships between the tested compounds. Flavonoids, therefore, exhibit significant steroid hormone activity, and may have an effect in the modification of cancer risk by diet, or in cancer therapeutics and prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.