Abstract

The codling moth Cydia pomonella is a major pest of global significance impacting pome fruits and walnuts. It threatens the apple industry in the Loess Plateau and Bohai Bay in China. Sterile insect technique (SIT) could overcome the limitations set by environmentally compatible area-wide integrated pest management (AW-IPM) approaches such as mating disruption and attract-kill that are difficult to suppress in a high-density pest population, as well as the development of insecticide resistance. In this study, we investigated the effects of X-ray irradiation (183, 366, 549 Gy) on the fecundity and fertility of a laboratory strain of C. pomonella, using a newly developed irradiator, to evaluate the possibility of X-rays as a replacement for Cobalt60 (60Co-γ) and the expanded future role of this approach in codling moth control. Results show that the 8th-day is the optimal age for irradiation of male pupae. The fecundity decreased significantly as the dosage of radiation increased. The mating ratio and mating number were not influenced. However, treated females were sub-sterile at a radiation dose of 183 Gy (20.93%), and were almost 100% sterile at a radiation dose of 366 Gy or higher. Although exposure to a radiation dose of 366 Gy resulted in a significant reduction in the mating competitiveness of male moths, our radiation biology results suggest that this new generation of X-ray irradiator has potential applications in SIT programs for future codling moth control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.