Abstract

First results on the energy spectrum and flux of reactor antineutrinos as a function of the distance L from the reactor core, measured in the Neutrino-4 experiment for 6 < L < 12 m, are presented. The flux L‑dependence fits to the 1/L2 form with a statistical significance of ~10% corresponding to 1.64σ, so that the measured spectrum deviates from the 1/L2 law at a confidence level ~90%. The measured energy spectrum deviates from the predicted one at a similar confidence level ~90%. That both deviations are best described with oscillation parameters in the same regions of $$\Delta m_{{14}}^{2} \approx 0.7{\text{-}}0.8$$ eV2and $${{\sin }^{2}}2{{\Theta }_{{14}}} \approx 0.10{\text{-}}0.15$$ boosts the overall confidence level to ~95% (2σ). These results suggest that antineutrinos oscillate to a sterile state, but still fall short of reliably establishing the oscillation phenomenon. At present, the possibility of mimicking the oscillation effect by systematic errors cannot be completely excluded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.