Abstract

Multiple resonance (MR) emitters are promising for highly efficient organic light-emitting diodes (OLEDs) with narrowband emission; however, they still face intractable challenges with concentration-caused emission quenching, exciton annihilation, and spectral broadening. In this study, sterically wrapped MR dopants with a fluorescent MR core sandwiched by bulk substituents were developed to address the intractable challenges by reducing intermolecular interactions. Consequently, high photo-luminance quantum yields of ≥90 % and small full width at half maximums (FWHMs) of ≤25 nm over a wide range of dopant concentrations (1-20 wt %) were recorded. In addition, we demonstrated that the sandwiched MR emitter can effectively suppress Dexter interaction when doped in a thermally activated delayed fluorescence sensitizer, eliminating exciton loss through dopant triplet. Within the above dopant concentration range, the optimal emitter realizes remarkably high maximum external quantum efficiencies of 36.3-37.2 %, identical small FWHMs of 24 nm, and alleviated efficiency roll-offs in OLEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.