Abstract

Aluminum alkoxide complexes supported by salen ligands [salen = N, N'-bis(salicylaldimine)-2-methylpropane-1,2-diamine or N, N'-bis(salicylaldimine)-2,2-dimethylpropane-1,3-diamine] with o-adamantyl substituents have been synthesized and investigated for the polymerization of ε-caprolactone. Geometric analysis of the catalysts used for the reaction reveals the metal coordination geometries to be intermediate between square-pyramidal and trigonal-bipyramidal. A detailed kinetic study accompanied by density functional theory modeling of key mechanistic steps of the reaction suggest that, in addition to the length of the backbone linker, the o-aryl substituents have a significant impact on the catalyst's reactivity. Bulky ortho substituents favorably distort the precatalyst geometry and thereby foster the achievement of the rate-limiting transition-state geometry at low energetic cost, thus accelerating the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.