Abstract

Glassy carbon electrodes were modified by electrochemical reduction of a diazonium molecule ((i)Pr3SiOCH2C6H4N2(+)BF4(-)) featuring a triisopropylsilyl-protected benzylic hydroxyl group. This electrochemical process introduced a monolayer of (i)Pr3SiOCH2C6H4- groups onto the surface of the electrode. The bulky -Si(i)Pr3 protecting group not only prevents the uncontrolled growth of structurally ill-defined and electronically blocking polyphenylene multilayers, but also separates the phenyl groups in the monolayer. Thus, the void spaces between these aryl units should allow a better accommodation of sizable molecules. Removal of the -Si(i)Pr3 protecting groups by (n)Bu4NF exposed the reactive benzylic hydroxyl functionalities that can undergo further transformations to anchor functional molecules. As an example, redox-active ferrocene molecules were grafted onto the modified electrode via a sequence of mesylation, azidation, and copper-catalyzed [3 + 2] cycloaddition reactions. The presence of ferrocenyl groups on the surface was confirmed by X-ray photoelectron spectroscopic and electrochemical studies. The resulting ferrocene-modified glassy carbon electrode exhibits cyclic voltammograms typical of surface-bound redox active species and remarkable electrochemical stability in an acidic aqueous environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.