Abstract
In visual and archaeal rhodopsins, light energy is stored in the chromophore-protein interaction after retinal photoisomerization. This paper reports a novel method to monitor the steric constraint after retinal isomerization by use of enhanced C-D stretching vibrations. In the difference FTIR spectra between an archaeal light-sensor pharaonis phoborhodopsin (ppR) and the primary K intermediate at 77 K, no peaks were observed in the 2160-2330 cm-1 region for deuterated retinals at position 7, 8, 10, 11, 12, and 15, whereas a strong peak appeared at 2244 cm-1 for the K intermediate of ppR possessing a C14-D-labeled retinal. The 2244-cm-1 band is assigned as the C14-D stretching vibration, and enhanced absorption in the K state probably originates from the local steric constraint at the C14-D position (also possible electrostatic field effects) after the C13=C14 double bond rotation.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.