Abstract

Equilibrium constants for the binding of a series of alkyl isocyanides to ferrous cytochrome c' from Rhodospirillum molischianum have been measured spectrophotometrically. The equilibrium constants range from 3.3 M-1 to 2.6 x 10(2) M-1 and follow the order methyl greater than ethyl less than n-propyl less than tert-butyl less than n-butyl less than amyl less than cyclohexyl less than n-hexyl. The decrease in equilibrium constant from methyl to ethyl isocyanide provides evidence for a steric interaction between the ligand and the protein. The increase in equilibrium constant from ethyl to n-hexyl isocyanide is accounted for by a favorable partitioning of the ligand into a hydrophobic heme coordination site. The effect of steric interactions on the differences in the binding constants has been further evaluated by comparing the alkyl isocyanide and CO binding constants for the ferrous cytochrome c' to those of a sterically unconstrained model heme complex in a detergent micelle. The results indicate that the heme coordination site of the ferrous cytochrome c' is severely sterically hindered, similar to that of the reported crystal structure of Rs. molischianum ferric cytochrome c'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call