Abstract

Transketolase (TK), a thiamin diphosphate (ThDP) dependent enzyme, catalyzes the reversible transfer of a two-carbon unit from keto- to aldo-substrates. Dihydroxyethylthiamin diphosphate (DHEThDP), formed as a result of cleavage of the donor substrate, serves as an intermediate of the TK reaction. TK from the yeast Saccharomyces cerevisiae is unique among thiamin enzymes displaying enzymatic activity after reconstitution with a methylated analogue of the native cofactor, 4′-methylamino-ThDP. The reconstitution of the apoenzyme with both ThDP and the methylated analogue can be analyzed by near UV circular dichroism. It was demonstrated that in the native holoenzyme and in the complex of TK with 4′-methylamino-ThDP the formation of the dihydroxyethyl-based carbanion/enamine took place with comparable rate constants, whereas the protonation of the reactive species was much faster in the complex with the analogue. The enzymatic activity of the enzyme reconstituted with 4′-methylamino-ThDP was 10 fold higher in the ferricyanide assay. We suggest that a methylation of the 4′-amino group of ThDP impairs the resonance stabilization of the carbanion/enamine intermediate both sterically and electronically, thus allowing either a faster protonation or oxidation reaction by ferricyanide. The formation of the optically active DHE-4′-methylamino-ThDP was monitored by near UV circular dichroism spectra and corroborated by 1H NMR analysis. The protonated form of the intermediate DHE-4′-methylamino-ThDP was released from the active sites of TK and accumulated in the medium on preparative scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call