Abstract

The molecular structure and conformation of 1,1,1,4,4,4-hexachloro-1,4-disilabutane in the gas-phase have been determined by electron diffraction and computational methods. The lowest-energy conformation has the trichlorosilyl groups anti to one another. The gauche conformation also has a shallow potential minimum, but lies about 19 kJ mol −1 above the anti form. Calculations on related butane derivatives, in which terminal methyl groups have been replaced by CCl 3, SiH 3 and SiCl 3 groups, reveal that the conformational preferences are primarily caused by steric interactions between the terminal groups, and that it is the presence of chlorine atoms that destabilises gauche conformations. The electronegativity of the chlorine atoms has only small effects, mainly limited to the Si Cl bond lengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.