Abstract

The steric and electronic effects in the resolution of enantiomeric amides on a commercially available ( R-N-(3,5-dinitrobenzoyl)phenylglycine chiral stationary phase (CSP) have been investigated. Several homologous series of enantiomeric amides were synthesized from alkyl and aromatic amines and from alkyl and aromatic acids. The results of the study indicate that chiral recognition is based on the formation of diastereomeric solute-CSP complexes that are due to attractive interactions located on a single bond in both the solute and CSP and on steric interactions within the complexes. The magnitude of the chiral resolution appears to depend on the steric bulk at the chiral center. In addition, when the amides synthesized from chiral amines were chromatographed, the ( R)-enantiomers eluted first, whereas the opposite elution order was found for the amides synthesized from enantiomeric carboxylic acids. Thus, the amide moiety not only provides the sites of attractive interaction between the solute and CSP, but also influences the spatial orientation of the two molecules, thereby affecting the relative stabilities of the two diastereomeric complexes and determinging the enantiomeric elution order.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call