Abstract

We characterize the allylic epoxyalcohols and their trihydroxy hydrolysis products generated from 9R- and 9S-hydroperoxy-octadecenoic acid (HPODE) under non-enzymatic conditions, reaction with hematin and subsequent acid hydrolysis, and enzymatic conditions, incubation with Beta vulgaris containing a hydroperoxide isomerase and epoxide hydrolase. The products were resolved by HPLC and the regio and stereo-chemistry of the transformations were determined through a combination of 1H NMR and GC–MS analysis of dimethoxypropane derivatives. Four trihydroxy isomers were identified upon mild acid hydrolysis of 9S,10S-trans-epoxy-11E-13S-hydroxyoctadecenoate: 9S,10R,13S, 9S,12R,13S, 9S,10S,13S and 9S,12S,13S-trihydroxy-octadecenoic acids, in the ratio 40:26:22:12. We also identified a prominent δ-ketol rearrangement product from the hydrolysis as mainly the 9-hydroxy-10E-13-oxo isomer. Short incubation (5 min) of 9R- and 9S-HPODE with B. vulgaris extract yielded the 9R- and 9S-hydroxy-10E-12R,13S-cis-epoxy products respectively. Longer incubation (60 min) gave one specific hydrolysis product via epoxide hydrolase, the 9R/S,12S,13S-trihydroxyoctadecenoate. These studies provide a practical approach for the isolation and characterization of allylic epoxy alcohol and trihydroxy products using a combination of HPLC, GC–MS and 1H NMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.