Abstract

Ego-motion estimation is a foundational capability for autonomous combine harvesters, supporting high-level functions such as navigation and harvesting. This paper presents a novel approach for estimating the motion of a combine harvester from a sequence of stereo images. The proposed method starts with tracking a set of 3D landmarks which are triangulated from stereo-matched features. Six Degree of Freedom (DoF) ego motion is obtained by minimizing the reprojection error of those landmarks on the current frame. Then, local bundle adjustment is performed to refine structure (i.e., landmark positions) and motion (i.e., keyframe poses) jointly in a sliding window. Both processes are encapsulated into a two-threaded architecture to achieve real-time performance. Our method utilizes a stereo camera, which enables estimation at true scale and easy startup of the system. Quantitative tests were performed on real agricultural scene data, comprising several different working paths, in terms of estimating accuracy and real-time performance. The experimental results demonstrated that our proposed perception system achieved favorable accuracy, outputting the pose at 10 Hz, which is sufficient for online ego-motion estimation for combine harvesters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.