Abstract

Silicon-stereogenic optically active silylboranes could potentially allow the formation of chiral silyl nucleophiles as well as the synthesis of various chiral silicon compounds. However, the synthesis of such silicon-stereogenic silylboranes has not been achieved so far. Here, we report the synthesis of silicon-stereogenic optically active silylboranes via a stereospecific Pt(PPh3)4-catalyzed Si–H borylation of chiral hydrosilanes, which are synthesized by stoichiometric and catalytic asymmetric synthesis, in high yield and very high or perfect enantiospecificity (99% es in one case, and >99% es in the others) with retention of the configuration. Furthermore, we report a practical approach to generate silicon-stereogenic silyl nucleophiles with high enantiopurity and configurational stability using MeLi activation. This protocol is suitable for the stereospecific and general synthesis of silicon-stereogenic trialkyl-, dialkylbenzyl-, dialkylaryl-, diarylalkyl-, and alkylary benzyloxy-substituted silylboranes and their corresponding silyl nucleophiles with excellent enantiospecificity (>99% es except one case of 99% es). Transition-metal-catalyzed C–Si bond-forming cross-coupling reactions and conjugate-addition reactions are also demonstrated. The mechanisms underlying the stability and reactivity of such chiral silyl anion were investigated by combining NMR spectroscopy and DFT calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call