Abstract
This paper describes the synthesis of 5 beta-cholestane-3 beta, 7 alpha,25-triol and 5 beta-cholestane-3 beta, 7 alpha, 12 alpha, 25-tetrol from their corresponding 3 alpha-analogs. The method consists of refluxing a mixture of a steroid alcohol, triphenylphosphine, and diethyl azodicarboxylate in benzene solution with an acid such as formic acid. The sterically pure ester (3 beta-formate) so formed after saponification then allows an easy access to the epimer of the starting alcohol. Differentiation of these 3 beta-hydroxy bile alcohols from their corresponding 3 alpha-epimeric analogs was made possible on the basis of proton, 13C-NMR, and mass spectra as well as chromatographic mobility. Steric requirements of sterols and nucleophilicity of attacking acidic components played an important role for the success of this synthesis. Only equatorial hydroxyl groups in these bile alcohols reacted under mild conditions and epimerization, as well as protection of the alcoholic group, was achieved in one step. Formic acid was the acid of choice since the axial formate ester formed is sufficiently reactive to be hydrolyzed (KHCO3/aq X MeOH) under mild conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.