Abstract
The mono- and binuclear Schiff base complexes [CoL3]·DMF (1) and [CoCdL3Cl2]·0.5H2O (2) were facilely synthesized using zerovalent cobalt and cadmium chloride (for 2) as starting materials and the pre-formed pro-ligand HL (2-methoxy-6-[(methylimino)methyl]phenol, the product of condensation of o-vanillin and methylamine) in air. The compounds were characterized by single crystal X-ray diffraction analysis and spectroscopic methods in solution and in the solid state. Both complexes demonstrate a profound catalytic activity in the stereoselective oxidation of cis-1,2-dimethylcyclohexane (model substrate) with m-CPBA (m-chloroperbenzoic acid) under mild conditions in the presence of promoters of various acidity (HNO3, TFA and HOAc). The heterometallic binuclear CoIIICdII pre-catalyst (2) was more active than the mononuclear CoIII one (1), exhibiting higher products yields up to 51% and excellent stereospecificity (up to 99.2% retention of stereoconfiguration). This result could be associated with a synergistic effect of two different metals in 2. Based on the large obtained kinetic isotope effect and H218O labeling studies, the overall reaction mechanism was proposed to proceed without the participation of free alkyl radicals. The acidity of the promoter was shown to influence catalytic parameters for both 1 and 2 so that the better parameters are achieved with the acid possessing lower pKa values (a stronger acid). The comparison of the catalytic behaviours of 1 and 2 is discussed in detail considering relevant examples from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.