Abstract
AbstractOxycyanation of alkenes would allow the direct construction of useful β‐hydroxy nitrile scaffolds. However, only limited examples of such reactions have been reported, and some problems including limited substrate scope and the lack of diastereocontrol in the case of the oxycyanation of internal alkenes have arisen. We herein report on the intermolecular oxycyanation of alkenes using p‐toluenesulfonyl cyanide (TsCN) in the presence of tris(pentafluorophenyl)borane (B(C6F5)3) as a catalyst, affording products that contain a sulfinyloxy group and a cyano group at the vicinal position. The reaction features a stereospecific syn‐addition. The reaction also shows a broad substrate scope with good functional group tolerance. Mechanistic investigations by experimental studies and density functional theory (DFT) calculations revealed that the reaction proceeds via an unprecedented stereospecific mechanism through the electrophilic cyanation of alkenes, in which B(C6F5)3 efficiently activates TsCN through the coordination of the cyano group to the boron center.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.