Abstract

To explore the structure-activity relationships of flavanonols on the inhibition of nitric oxide (NO) production in RAW 264.7 cells, we have prepared a series of synthetic flavanonols. In our previous study, the 2′,3′-dihydroxyphenyl substructure was found to be the most potent B ring substructure among the flavanonols having 3,5,7-trihydroxychroman-4-one as the A/C ring. In this study, we examined the effect of diverse substitutions on the A ring of the 2-(2,3-dihydroxyphenyl)-3-hydroxychroman-4-one scaffold, i.e., by fixing the B ring to the 2′,3′-dihydroxyphenyl substructure. Eighteen stereoisomers and 4 racemic mixtures were prepared, and their inhibitory potency on NO production in RAW 264.7 cells was tested. We observed higher inhibitory activity in the (2R,3R) stereoisomers than in the (2S,3S) stereoisomers. The presence of a hydroxy or a methoxy group at the 7-postiion enhanced the inhibitory potency, and the additional substitutions at the 6- or 8-position in the A ring increased potency and stereospecificity. A representative compound, (2R,3R)-2′,3′,7,8-tetrahydroxyflavanonol 5e, had an IC50 value of 17µM, whereas its (2S,3S) stereoisomer did not inhibit NO production at all at a concentration of 100µM. In this study, it was necessary to determine the absolute configuration of the stereoisomers of the synthesized flavanonols that carry methoxy substitutions in the A ring. The procedure to determine their absolute configuration by the CD excitation chirality method is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call