Abstract

An electrophoretically mediated microanalysis assay (EMMA) for the determination of the stereoselective reduction of L-methionine sulfoxide diastereomers by methionine sulfoxide reductase enzymes was developed using fluorenylmethyloxycarbonyl (Fmoc)-L-methionine sulfoxide as substrate. The separation of the diastereomers of Fmoc-L-methionine sulfoxide and the product Fmoc-L-methionine was achieved in a successive multiple ionic-polymer layer-coated capillary using a 50 mM Tris buffer, pH8.0, containing 30mM sodium dodecyl sulfate as background electrolyte and an applied voltage of 25kV. 4-Aminobenzoic acid was employed as internal standard. An injection sequence of incubation buffer, enzyme, substrate, enzyme, and incubation buffer was selected. The assay was optimized with regard to mixing time and mixing voltage and subsequently applied for the analysis of stereoselective reduction of Fmoc-L-methionine-(S)-sulfoxide by human methionine sulfoxide reductase A and of the Fmoc-L-methionine-(R)-sulfoxide by human methionine sulfoxide reductase B. The Michaelis-Menten constant, K m, and the maximum velocity, v max, were determined. Essentially identical data were determined by the electrophoretically mediated microanalysis assay and the analysis of the samples by CE upon offline incubation. Furthermore, it was shown for the first time that Fmoc-methionine-(R)-sulfoxide is a substrate of human methionine sulfoxide reductase B.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call