Abstract

Oxygen-to-sulfur substitutions in DNA phosphate often enhance affinity for DNA-binding proteins. Our previous studies have suggested that this effect of sulfur substitution of both OP1 and OP2 atoms is due to an entropic gain associated with enhanced ion pair dynamics. In this work, we studied stereospecific effects of single sulfur substitution of either the OP1 or OP2 atom in DNA phosphate at the Lys57 interaction site of the Antennapedia homeodomain-DNA complex. Using crystallography, we obtained structural information on the RP and SP diastereomers of the phosphoromonothioate and their interaction with Lys57. Using fluorescence-based assays, we found significant affinity enhancement upon sulfur substitution of the OP2 atom. Using NMR spectroscopy, we found significant mobilization of the Lys57 side-chain NH3 (+) group upon sulfur substitution of the OP2 atom. These data provide further mechanistic insights into the affinity enhancement by oxygen-to-sulfur substitution in DNA phosphate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.