Abstract

A chiral capillary electrophoresis (CE) system allowing simultaneous enantiomer determination of citalopram (CIT) and its pharmacologically active metabolite desmethylcitalopram (DCIT) was developed. Excellent chiral separation was obtained using 1% sulfated-β-cyclodextrin (S-β-CD) as chiral selector in combination with 12% ACN in 25 mM phosphate pH 2.5. Samples were prepared by liquid-phase microextraction (LPME) based on a rodlike porous polypropylene hollow fibre. CIT and DCIT were extracted from 1 ml plasma made alkaline with NaOH, into dodecyl acetate impregnated in the pores of a hollow fibre, and into 20 mM phosphate pH 2.75, inside the hollow fibre. The acceptor solution was directly compatible with the CE system. Efficient sample clean-up was seen, and the recoveries were 46 and 29% for the enantiomers of CIT and DCIT, respectively, corresponding to 31 and 19 times enrichment. The limit of quantification (S/N=10) was <11.2 ng/ml, intra-day precision was <12.8% RSD, and inter-day precision was <14.5% RSD, for all enantiomers. The validated method was successfully applied to simultaneous determination of enantiomer concentrations of CIT and DCIT in plasma samples from nine patients treated with racemic citalopram. The results confirm LPME-CE as a suitable and promising tool for enantiomeric determination of chiral drugs and metabolites in biological matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.