Abstract

Consecutive ring-expansion reactions of oxiranes with dimethylsulfxonium methylide were studied experimentally and modeled computationally at the density functional theory (DFT) and second-order Møller-Plesset (MP2) levels of theory utilizing a polarizable continuum model (PCM) to account for solvent effects. While the epoxide to oxetane ring expansion requires 13-17 kcal mol(-1) activation and occurs at elevated temperatures, the barriers for the ring expansions to oxolanes are higher (ca. 25 kcal mol(-1)) and require heating to 125 °C. Further expansions of these oxolanes to the six-membered oxanes are hampered by high barriers (ca. 40 kcal mol(-1)). We observe the complete conservation of the enantiomeric purities for the nucleophilic ring expansions of enantiomeric 2-mono- and 2,2-disubstituted epoxides and oxetanes with dimethylsulfoxonium methylide. This is a convenient general approach for the high-yielding preparation of optically active four- and five-membered cyclic ethers from oxiranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call