Abstract

Chiral acyclic tertiary allylic alcohols are very important synthetic building blocks, but their enantioselective synthesis is often challenging. A major limitation in catalytic asymmetric 1,2‐addition approaches to ketones is the enantioface differentiation by steric distinction of both ketone residues. Herein we report the development of a catalytic asymmetric Meisenheimer rearrangement to overcome this problem, as it proceeds in a stereospecific manner. This allows for high enantioselectivity also for the formation of products in which the residues at the generated tetrasubstituted stereocenter display a similar steric demand. Low catalyst loadings were found to be sufficient and the reaction conditions were mild enough to tolerate even highly reactive functional groups, such as an enolizable aldehyde, a primary tosylate, or an epoxide. Our investigations suggest an intramolecular rearrangement pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call