Abstract

We have developed a convergent method for the synthesis of allylic alcohols that involves a reductive coupling of terminal alkynes with α-chloro boronic esters. The new method affords allylic alcohols with excellent regioselectivity (anti-Markovnikov) and an E/Z ratio greater than 200:1. The reaction can be performed in the presence of a wide range of functional groups and has a substrate scope that complements the stoichiometric alkenylation of α-chloro boronic esters performed using alkenyl lithium and Grignard reagents. The transformation is stereospecific and allows for the robust and highly selective synthesis of chiral allylic alcohols. Our studies support a mechanism that involves hydrocupration of the alkyne and cross-coupling of the alkenyl copper intermediate with α-chloro boronic esters. Experimental evidence excludes a radical mechanism of the cross-coupling step and is consistent with the formation of a boron-ate intermediate and a 1,2-metalate shift.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call