Abstract

The stereoselective metabolism of lactofen in primary rat hepatocytes was studied using a chiral high-performance liquid chromatographic (HPLC) method. Rac-lactofen and its two enantiomers, S-(+)- and R-(-)-lactofen, as well as two of its major metabolites, acifluorfen, S-(+)- and R-(-)-desethyl lactofen, were used as substrates,. The single and joint cytotoxicity of parent compounds and the metabolites were assessed by coincubation with rat hepatocytes as target cells. Cytotoxicity was determined by the methyl tetrazolium (MTT) assay. In hepatocyte incubations, S-(+)-lactofen was degraded more rapidly than R-(-)-lactofen, and a stereospecific formation of S-(+)-desethyl lactofen was detected. Metabolism of lactofen to desethyl lactofen was processed with the retention of configuration, and the achiral compound, acifluorfen, was the shared metabolite generated from both S-(+)- and R-(-)-lactofen. There was no chiral conversion of lactofen or desethyl lactofen enantiomers during the incubation. For the cytotoxicity research, the calculated EC50 values indicated that when being applied individually, the parent compound was less toxic than its metabolites, while the combination with metabolites enhanced its cytotoxic effects. The data presented here would be helpful for a more comprehensive assessment of the ecotoxicological and environmental risks of lactofen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.